Protocol for Carrying Authentication for Network Access (PANA)
(draft-ietf-pana-pana-00.txt)

Authors:
Dan Forsberg
Yoshihiro Ohba
Basavaraj Patil
Hannes Tschofenig
Alper Yegin
Contents

• Introduction
• PAA Discovery
• Carrying EAP AVPs
• Creating a PANA SA
•
Producing the First Draft

- Design Team was established to work on initial proposal
- Work in progress:
 - Further discussions will be carried on the PANA ML

- Scope of the solution is bounded by:
 - draft-ietf-pana-usage-scenarios-04.txt
 - draft-ietf-pana-threats-eval-02.txt
 - draft-ietf-pana-requirements-04.txt

- Design team discussion archive available at:
 - http://danforsberg.info/pipermail/pana-dt

- Objective:
 - Satisfy the above requirements and scenarios by a simple protocol design
 - Various optimizations and enhancements left out for future consideration
Introduction: **PANA Framework**

Note: Some protocol interactions are optional.
Introduction: **PANA Protocol**

Interaction of PANA with the other protocols needs to be analyzed.
What was learned from the Usage Scenarios?

- PANA can be used in
 1. Environments with physical layer security
 2. Environments with link layer security
 3. Environments where no lower security is available

- Scenario (3) is the most difficult one for PANA deployment and adding the most requirements

- It is difficult to support all scenarios with a single protocol. Hence some protocol steps have to be optional.

- Multiple Authentication and Key Exchange methods should be supported ⇒ EAP
Assumptions

• **Topology Knowledge**
 Device Identifier information can be installed at the correct devices

• **Device Identifier Installation**
 Security provided by DI installation is sufficient for some environments. Otherwise, DI is accompanied by cryptographic keys.

• **Disconnect Indication**
 Link layer disconnect indication cannot be assumed

• **Session Key Establishment**
 Session key needs to be available for PANA SA

Note: Some assumptions will be explained in more details in subsequent slides.
PAA Discovery (1/2)

• Why?
 – To discover the PAA's address dynamically.

• How?
 – 1a) (Link local) multicast UDP packet from PaC.
 – 1b) PaC sends data packets.
 • EP sends a `PANA_discover` message to PAA, which contains PaC’s unicast address.
 – PAA sends `PANA_start` to PaC.
PAA Discovery (2/2)

• **Threats?**

 – Man-in-the-Middle between PaC and PAA.
 – DoS against PAA, DoS against PaC.

• **Countermeasures?**

 – Difficult since message exchange between neighboring nodes.
 • hop limit check

 – Goal:
 • Prevent off-path attacks (Cookie, Sequence numbers)
 • Prevent memory allocation with single message (Cookie)
Initial Sequence Number and Cookie

- Initial Sequence Number (ISN) mechanism is used to prevent blind DoS and off-path attacks.

- Cookie mechanism is used to prevent non-blind DoS attack.
 - Cookie is sent from PAA in \texttt{PANA_start} message, but does not create any state in PAA that would enable DoS attack.
 - Cookie is implementation specific

- Message Flow

<table>
<thead>
<tr>
<th>PaC</th>
<th>PAA</th>
<th>Message(tseq,rseq) [AVPs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>--</td>
<td>\texttt{PANA_discover}(0,0)</td>
</tr>
<tr>
<td>2)</td>
<td><</td>
<td>\texttt{PANA_start}(x,0) [Cookie]</td>
</tr>
<tr>
<td>3)</td>
<td>--</td>
<td>\texttt{PANA_start}(y,x) [Cookie]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(continued to authentication phase)</td>
</tr>
</tbody>
</table>
Carrying EAP over PANA

- **Why?**
 - Authentication and authorization required for network access procedures

- **How?**
 - EAP is payload of PANA (carried in **EAP AVP**)

- **Threats?**
 - MITM (injecting, modifying etc.); DoS; Eavesdropping

- **Countermeasures?**
 - Use an appropriate EAP method depending on the security requirements
 - Difficult to prevent all attacks until PANA SA is established
Carrying EAP over PANA
Transport Protocol Properties

• EAP requires ordered message delivery
 – EAP provides its own reliability and does not require the transport to be reliable

• EAP recommends EAP methods to provide message fragmentation
 – EAP TLS and PEAP support fragmentation, for example

• EAP supports retransmission for EAP Requests
 – Retransmission timeout calculation based on RFC2988 takes congestion control into account
Carrying EAP over PANA
Approach chosen by PANA

• PANA does not provide fragmentation.
 – Use EAP method fragmentation for EAP messages
 – Use IP fragmentation for other messages

• PANA provides:
 – Ordered delivery of EAP messages on top of UDP
 – Protection of PANA PDU after PANA SA is established
Carrying EAP over PANA
Sequence number handling (1/3)

• Why sequence number?
 – To provide ordered delivery of messages
 – Robustness against blind DoS attack is needed

• Considered approaches:
 – Single sequence number with PANA-layer retransmission
 – Dual sequence number with orderly-delivery
 – Dual sequence number with reliable-delivery

• Selected approach: Dual sequence number with orderly-delivery
 – Reason:
 • The 1st approach assumes ‘lock step’ messaging for all messages (EAP Success/Failure is not lock-step safe)
 • The 3rd approach is not simpler than the 2nd one

• Appendix in the draft provides detailed explanation
Carrying EAP over PANA
Sequence number handling (2/3)

- Following sequence numbers are included in PANA header
 - Transmitted sequence number (tseq)
 - Received sequence number (rseq)
- tseq starts from initial sequence number and is incremented by 1 when
 sending a message (even it is retransmitted)
- rseq is copied from the tseq field of the last accepted message
- When a message is received, it is valid (in terms of sequence #) if
 - Its tseq > tseq of the last accepted message, AND
 - Its rseq falls in the range
 [tseq of the last ack’ed msg+1, tseq of the last transmitted msg]
Carrying EAP over PANA
Sequence number handling (3/3)

PaC PAA Message(tseq,rseq)[AVPs]

(continued from discovery and initial handshake phase)

<----- PANA_auth(x+1,y)[EAP{Request}]
-----> PANA_auth(y+1,x+1)[EAP{Response}]
 .
 ...

<----- PANA_auth(x+2,y+1)[EAP{Request}]
-----> PANA_auth(y+2,x+2)[EAP{Response}]

<----- PANA_success(x+3,y+2) // F-flag set
 [EAP{Success}, Device-Id, Data-Protection, MAC]
-----> PANA_success_ack(y+3,x+3)
 [Device-Id, MAC] // F-flag set
PANA SA Establishment

• **Why?**
 – Protect subsequently exchanged PANA messages
 • E.g.: re-auth, disconnect
 – Bootstrap L2 or L3 access control, when needed

• **How?**
 – Key derived from EAP method; No algorithm negotiation

• **Threats?**
 – MITM - weak EAP methods

• **Countermeasures?**
 – Mutual authentication within EAP method
 – Weak EAP methods ⇒ see next slides
PANA SA Establishment

PAA Discovery

EAP Authentication (PaC ⇔ AAA[L|H] Authentication)

AAA Session Key Transport

Protected PANA Messages

PANA relies on EAP methods to produce keying material for PANA SA.

IETF56
PANA SA Establishment

- EAP method must provide session key for PANA SA

- There is no secure tunnel established between the PaC and the PAA (e.g. via ISAKMP or TLS) outside EAP!
EAP Method Choice

• PANA can carry any EAP authentication method

• It is the responsibility of the user and the network operator to pick the right method, depending on the environment
 – key derivation
 – mutual authentication
 – DoS resiliency

• PANA does not enable weak methods in insecure environments (a non-goal!)
 – PANA does not create a secure channel for them
 – PANA can carry EAP-tunneling methods (PEAP, EAP-TTLS)
 • Risk: MitM, needs to be fixed (not in PANA WG!)
Device ID Choice

- PaC will configure an IP address before PANA if it can
 - Network policy: EP might detect PaC’s attempts and trigger PANA first

- DI is either a link-layer address, or IP address
 - IP address: when PaC can configure one prior to PANA and IPsec is used for access control.
 - Link-layer address: otherwise.
Filter Rule Installation

• PANA protocol helps identifying who should gain access

• PAA helps EP build filters based on PANA results

• When PAA and EP are separated, a protocol is needed
 – This is not “PANA protocol”
 – PANA WG will “identify” at least one such protocol
 – MIDCOM WG’s output might be useful
Device Identifier Exchange

• **How?**
 – Key derived from EAP method; No algorithm negotiation

• **Why?**
 – By installing this device identifier unauthorized nodes are not able to inject packets.

• **Threats?**
 – MITM (injecting, modifying, etc.); DoS
 – IP spoofing; DI reuse (e.g. after roaming)

• **Countermeasures?**
 – Exchange data origin authenticated, replay and integrity protected with PANA SA
 – IP Spoofing and DI => see next slides

IETF56
Triggering a data protection protocol

• Why?
 – Spoofing attacks on shared links cannot be prevented by device ID based packet filters. Cryptographic protection needed.

• How?
 – PAA can signal if L2 or L3 ciphering should be initiated after PANA.
 – EAP established session key is indirectly used as an input to enforce link or network layer protection.
 – PANA can help bootstrap link-layer/network-layer ciphering
Re-authentication (1/3)

• **Why?**
 – Lower-layer disconnect indication is not always available
 – Garbage collection and stop of accounting required
 – Prevent DI spoofing and resulting service theft after disconnect (e.g. due to roaming)

• **How?**
 – Soft-state principle
 – Two types of re-authentication supported by PANA
 • Re-authentication based on **EAP**
 • Re-authentication based on **PANA_reauth/PANA_reauth_ack** exchange
 – Both PaC and PAA can initiate re-authentication
Re-authentication (2/3)

• **Threats?**
 – Spoofing re-authentication messages

• **Countermeasures?**
 – Protection by PANA SA
 – Limit re-authentication rate in implementation
Re-authentication (3/3)
Message Flow

<table>
<thead>
<tr>
<th>PaC</th>
<th>PAA</th>
<th>Message(tseq,rseq) [AVPs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>----></td>
<td>PANA_reauth(q,p) [MAC]</td>
<td></td>
</tr>
<tr>
<td><-----</td>
<td>PANA_reauth_ack(p+1,q) [MAC]</td>
<td></td>
</tr>
</tbody>
</table>

Example Sequence for PaC-initiated Quick Re-authentication

<table>
<thead>
<tr>
<th>PaC</th>
<th>PAA</th>
<th>Message(tseq,rseq) [AVPs]</th>
</tr>
</thead>
<tbody>
<tr>
<td><-----</td>
<td>PANA_reauth(p,q) [MAC]</td>
<td></td>
</tr>
<tr>
<td>----></td>
<td>PANA_reauth_ack(q+1,p) [MAC]</td>
<td></td>
</tr>
</tbody>
</table>

Example Sequence for PAA-initiated Quick Re-authentication
PANA session termination (1/2)

• **Why?**
 – PaC ⇒ PAA: Stop of accounting or finish network access
 – PAA ⇒ PaC: Many reasons (e.g. insufficient funds)

• **How?**
 – PANA message sent by PaC (disconnect indication)
 – PANA message sent by PAA (session revocation)
 • Revocation reason is included in **Revocation-Status AVP**

• **Threats?**
 – Adversary injecting a termination message (DoS)

• **Countermeasures?**
 – Protection by PANA SA
PANA session termination (2/2)
Message Flow

PaC PAA Message(tseq,rseq) [AVPs]

PANA_disconnect(q,p) [MAC]
PANA_disconnect_ack(p+1,q) [MAC]

Example Sequence for Disconnect Indication

PaC PAA Message(tseq,rseq) [AVPs]

PANA_revocation(p,q) [Revocation-Status,MAC]
PANA_revocation_ack(q+1,p) [MAC]

Example Sequence for Session Revocation
Open Issues and Next Steps

- **Discuss some open issues**
 - Flexibility of Device Identifier
 - Updating a device identifier
 - Session Identifier
 - Key derivation
 - Sequencing EAP methods
 - Integrity protection offered by PANA SA sufficient?
 - Re-authentication lifetime negotiation
 - Flow/Congestion Control

- **Next steps**
 - Improve draft
 - Define message formats
Backup Slides
Sequencing of EAP methods

• Why?
 – Some scenarios require more sequencing of EAP methods

• How?
 – Multiple EAPs performed in a single PANA session
 • Each EAP is delimited with PANA_success/failure
 • PANA_success/failure has F-flag to indicate final exchange.
Sequencing of EAP methods
Message Flow

(continued from discovery and initial handshake phase)

// First EAP run for NAP authentication

<----- PANA_auth[EAP{Request}]

-----> PANA_auth[EAP{Response}]

<----- PANA_success[EAP{Success},MAC] // F-flag not set

-----> PANA_success_ack[Device-ID, MAC] // F-flag not set

// Second EAP run for ISP authentication

<----- PANA_auth[EAP{Request},MAC]

-----> PANA_auth[EAP{Response},MAC]

<----- PANA_success[EAP{Success}, MAC] // F-flag set

-----> PANA_success_ack[MAC] // F-flag set
Session key for PANA SA is a combination of two AKA steps.